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Abstract 
 
The SHE-Model (Model of Swarming and Herding agents affected by an Environment), which 
is presented in this paper, simulates opinion dynamics and collective movement dynamics in 
a group of ideal type path-dependent agents who perform swarming or herding behavior. 
 
Let's assume there exists a path-dependent process that involves or affects agents, where a 
path-dependent process is a self-reinforcing process with the tendency towards a lock-in. 
What mathematics can be developed based on this definition and fundamental assumption? 
Corresponding to Coleman's Bathtub, the first step of disaggregation from path dependence 
theory to the ideal type path dependent has been deduced in a previous paper. This paper 
now focuses on the implementation of the ideal type path dependent agents in a simulation 
model, which is the second step. In the third step, the SHE-Model again aggregates the 
dynamics back to the macro level. Completing Coleman's Bathtub it can thus be said that if 
there is a path-dependent process affecting agents, social dynamics evolve that can be 
described by the SHE-Model.  
 
Generally, on the macro level swarming and herding behavior occurs if there is a path-
dependent process. Vice versa, simulations with the SHE-Model reveal that the simulated 
opinion dynamics are path-dependent processes. Thus, whenever there are opinion 
dynamics involved in a path-dependent process, these can be described by swarming and 
herding. 
 
Accordingly, this proves that the ideal type path-dependent behavior implemented in the 
swarming and herding behavior in the SHE-Model is a basic element of path-dependent 
behavior. Therefore, the SHE-Model allows for a huge applicability to explain and describe 
social dynamics throughout society and the model can be used for the approximation of 
opinion dynamics and human behavior. 
 
 
Keywords 
 
path dependence, social simulation, agent-based modeling, path-dependent behavior, 
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1 Introduction 
 
In times of social media, swarm intelligence, post-truth politics, and alternative facts opinion 
diffusion dynamics rule the world. Who takes the lead and who follows? In a group consisting 
entirely of swarming agents, all move in cycles. If cyclical movement is excluded and there is 
exactly one non-swarming agent, everybody directly or indirectly follows that one particular 
agent. Is this behavior realistic? Is this behavior stupid? Kominek (2012) explains that 
following behavior is not stupid but extremely optimized. Although it is not optimized with 
regard to the quality of the outcome, it is optimized by our brains with respect to the speed of 
decision-making. Using the least-effort-principle from social psychology, it is deduced  that 
somebody who needs to take the same action decisions again and again rather uses a 
shortcut and just performs the actions instead of wasting time on lengthy decision-making 
processes again and again (Kominek 2012). This behavior seems very realistic at present, 
when everybody needs to make multiple decisions under time pressure. But what is the 
result? Path dependence. 
 
In social sciences, a common understanding of path dependence is that "history matters": 
previous events shape subsequent ones. Path dependency theory has been coined by 
Arthur's research on increasing returns (1994) and David's case study on the QWERTY-
keyboard (1997). Arthur discovered that in markets competing product shares stabilize over 
time. Seeking explanations for which technology wins in a market, Arthur introduced the 
theory of increasing returns "to show the process by which lock-in occurs and an outcome is 
selected" (Arthur 2013, p. 1186). While the final level of stabilization cannot be predicted at 
the time of the launch, the dynamics that lead to the stabilization can be described by an urn 
model or computer simulation of positive feedback. The economic argument behind these 
dynamics is the mechanism of increasing returns (Arthur 1994). David (1997) documented 
the consistency of the key placement from the early typewriters to modern computers. Even 
on smartphones the letters are placed in the same order on a "keyboard", if that wording is 
still appropriate, despite the fact that former reasons of optimization such as to prevent 
clashing or jamming of keys are not applicable anymore. Since the early days of path 
dependence theory many scientists have followed up on trying to extract or describe 
mechanisms that shape or stabilize a path-dependent process, discussing which cases can 
really be called path-dependent or whether they are just the outcome of utility optimized 
behavior and whether or not these are contradictions (Beyer 2015; Liebowitz & Margolis 
2014). Similarly important is the debate on critical junctions, the beginning of paths or the 
very moment when the lock-in occurs (Collier & Collier 1991; Sydow, Schreyögg, Koch 
2009), and path creation, which tackles the questions whether a path can deliberately be 
created or altered (Garud & Karnøe 2001). Nobel laureate Douglas North describes the 
effect of path dependence on decision-making in his book on institutions as follows: "At every 
step along the way there were choices— political and economic—that provided real 
alternatives. Path dependence is a way to narrow conceptually the choice set and link 
decision making through time. It is not a story of inevitability in which the past neatly predicts 
the future" (North 1990, pp. 98-99). Even though behavior cannot be predicted as long as 
agents have the freedom to choose differently, a good estimation may be possible by 
assessments of the manner in which path dependency narrows the choice set or even 
channels decisions or actions when asymptotically approaching a lock-in. Can path-
dependent behavior be locally approximated close to a lock-in? This is the overarching 
research question that will be answered in this paper using the specifically designed SHE-
Model. 
 
The definition of path dependence used in this paper goes back to the early path 
dependence theory (Sydow, Schreyögg, Koch 2009):  
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A path-dependent process 
is a self-reinforcing process 
with the tendency towards 

a lock-in. 
 
Thus, taking a mathematical perspective: What conclusions can be logically developed from 
the assumption of existing path dependence following the above definition? 
 
Can social behavior be locally aproximated with the SHE-Model? 
 
In the next sections the SHE-Model is presented and applied to simulate and assess 
potential opinion dynamcis in a group of ideal type path-dependent agents. Although it is a 
basic swarming and herding model, the SHE-Model is designed to have hardly any cyclical 
movement in the networks of agents during the simulations. And, if available, the swarming 
agents follow somebody who has had the correct opinion in the previous time step, based on 
the feedback of the social environment. 
 
The SHE-Model is used to reaggregate social dynamics from the micro to the macro level in 
a chain of reasoning from which follows that the SHE-Model can be used to approximate real 
life behavior. 
 
The structural outline of the paper is that in the next section the important chain of reasoning 
is presented and explained. Afterwards, the SHE-Model is described in detail. In the 
subsequent section the model is used to answer the remaining questions from the chain of 
reasoning and to analyze how the simulated dynamics change when setup variables are 
altered. In a conclusion the core results are summarized and an outlook is briefly scetched. 
 
 
2 The chain of reasoning 
 
 
 
 
 
 
 

 
Figure 1: Chain of reasoning: As soon as the "!" is proven, the SHE-Model can be used as a 
local approximation of path-dependent behavior, so the social dynamics that are simulated 
with the SHE-Model approximate real life behavior.  

 path-dependent process : ( ) with  agents.
Does a path-dependent process necessarily lead to swarming and herding dynamics

such as those simulated by the SHE-Model?
Vice versa, is all swarming a

i i ip A p A A∃ →

nd herding behavior embedded in a path-dependent process?
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2.1 From the macro level to the micro level 
 
The first deduction is from the macro level, on which path dependence theory is usually 
discussed, to the micro level, seeking to explain how a path-dependent process affects the 
behavior of involved or affected agents.  
 
How do people behave when they are affected by path dependence? 
 
This question is chosen by Kominek (2012) as basis for the deduction of a theory of path 
dependence at the micro level: "Whatever it is that causes similar actions that can be 
understood as the following of a path, that way of acting becomes more and more of a habit" 
(Kominek 2012, p. 140). Applying the least-effort-principle (social psychology) a couple of 
times, which mainly states that the brain always takes the way of least effort to make 
decisions (e.g. Chaiken & Trope 1999), Kominek deduces that the permanent shortcut in 
decision-making results in a following behavior of the considered agents who are affected by 
path dependence. This means that the more an actor tends to decide and act path-
dependently, the more his decision-making processes tend to resemble ideal type path-
dependent behavior (Kominek 2012), which is to follow others such as neighbors or the 
masses, whatever is at stake in the given situation1.  
 
Thus, path dependency at the micro level can be described as a following behavior. The 
more an agent decides and acts path-dependently, the more his behavior resembles an ideal 
type path-dependent, which implies to follow others. 
 
 
2.2 Conclusions at the micro level 
 
In the second step, the theory of the ideal type path-dependent is implemented as the basis 
of the SHE-Model. What happens in a group of agents of ideal type path-dependent? To 
allow a wide applicability of the SHE-Model, the implementation of the ideal type path-
dependent has to be as plausible as possible. In general, following behavior of agents can be 
either the following of individual agents, the majority of all agents, or the majority of agents 
within a certain subgroup, the average of all agents, or the average of agents within a certain 
subgroup, or even external institutions or norms, whichever seem accessible for the agents 
to follow. These kinds of following behavior can be divided into two types, one swarming type 
for agents who obtain the information they follow directly locally within their vision, and a 
herding type for agents who follow some globally aggregated information. In the SHE-Model 
the ideal type path-dependent agents are implemented as swarming or herding agents. 
While in each time step each swarming agent chooses one of its neighbors to follow for the 
opinion dynamics, a swarming agent moves in a flocking behavior such as aligning with 
others. Both are kinds of following behavior but over time the flocking behavior increases the 
likelihood of a swarming agent choosing to follow the same neighbor again and again, which 
supports the idea of path dependence. For the simulation of opinion dynamics herding 
agents are following the majority of all agents, i.e. the masses, while they move around in the 
average direction of all agents, which is herding. The idea behind this implementation is to 
start with a basic model but still allow for a certain variety and interaction of at least two types 
of agents. Does the chain of reasoning already hold true for this basic model? 
 

                                                           
1 This theory of path dependence at the micro level (Kominek 2012) is deduced from the macro level 
definition of path dependence: A path-dependent process is a self-reinforcing process with the 
tendency for a lock-in (Sydow et al. 2009). This definition basically coincides with the more formalized 
definition by Vergne and Durand (2010) who "offer a narrow definition of path dependence as a 
property* of a stochastic* process which obtains under two conditions (contingency* and self-
reinforcement*) and causes lock-in* in the absence of exogenous shock." (Vergne & Durand 2010, p. 
737) 
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2.3 Back from the micro level to the macro level - the SHE-Model 
 
Do the opinion or movement dynamics of a group of ideal type path-dependent agents 
always end up in a lock-in? Are multiple outcomes possible? During the simulations, the 
SHE-Model checks during each time step whether the group of agents already is in a lock-in 
and it stops as soon as the lock-in is reached. In the SHE-Model two types of lock-in are 
possible: an opinion-lock-in and a collective-movement-lock-in. It is even possible to have 
each type of lock-in separately or both reached at the same time step. Once the entire chain 
of reasoning holds true, this step becomes important because as soon as the "!" is proven, 
the SHE-Model can be used as a local approximation of path-dependent behavior so the 
social dynamics that are simulated with the SHE-Model approximate real life behavior. 
 
 
2.4 Conclusions at the macro level 
 
Does a path-dependent process necessarily lead to swarming or herding dynamics such as 
simulated by the SHE-Model? Or vice versa, is all swarming and herding behavior always 
embedded in a path-dependent process? Is all following behavior path-dependent? If the 
first, second, and third step of the chain of reasoning are all true, it follows that all path-
dependent behavior can be described in swarming or herding dynamics as simulated by the 
SHE-Model. This chain of reasoning from the macro to the micro level and back to the macro 
level is also described by Coleman's Bathtub. For the other direction of conclusions, the 
results of the SHE-Model are important: if the opinion-dynamics are self-reinforcing with the 
tendency towards a lock-in they are path-dependent. If this holds true, then it can be 
concluded that for all following behavior that is simulated with the SHE-Model the opinion 
dynamics are path-dependent. 
 
 
3 The SHE-Model 
 
In the SHE-Model (Model of Swarming and Herding agents affected by an Environment) a 
group of agents of the ideal type path-dependent is simulated. Agents of the ideal type path-
dependent are following others, e.g. their neighbors or the masses, with regard to opinion 
dynamics and movement. Thus, in the model, which is coded in NetLogo (Wilensky 1999), 
there are two different types of agents in a given environment: 
 
Swarming agents: A swarming agent copies the opinion of a neighbor, which is another 
agent within his vision. He prefers to choose an agent who has had a correct opinion in the 
previous time step. The swarming movement resembles flocking behavior. 
 
 to opinion-swarming 
   find-swarm-neighbors 
   ifelse any? swarm-neighbors with [size? = true]  
     [ find-big-neighbor  
       create-link-to nearest-neighbor 
       set new-color [color] of nearest-neighbor] 
     [ if any? swarm-neighbors with [size? != false] [ 
       find-random-neighbor 
       create-link-to nearest-neighbor 
       set new-color [color] of nearest-neighbor] 
     ] 
 end 
 
 to swarming  ;; turtle procedure 
   find-swarm-neighbors 
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   if any? swarm-neighbors [ 
     find-nearest-neighbor 
     ifelse distance nearest-neighbor < minimum-separation 
       [ separate ] 
       [ align ] 
   ] 
 end 
 
Herding agents: A herding agent follows the masses. Thus, his opinion corresponds to the 
majority opinion of all other agents. The herding agent copies the average heading of the 
entire group for his movement. 
 
 to opinion-herding 
   if count (turtles with [color = blue ]) > count ( turtles with [color = yellow] ) [ 
     ask cows [ set color blue ] 
   ] 
   if count (turtles with [color = blue ]) < count ( turtles with [color = yellow] ) [ 
     ask cows [ set color yellow ] 
   ] 
   if count (turtles with [color = blue ]) = count ( turtles with [color = yellow] ) [ 
     ask cows [ ifelse random 2 = 0 [ set color yellow ] [ set color blue ]] 
   ] 
 end 
 
 to herding  ;; turtle procedure 
   find-swarm-neighbors 
   if any? swarm-neighbors [ 
     find-nearest-neighbor 
     ifelse distance nearest-neighbor < minimum-separation 
       [ separate ] 
       [ align-group ] 
   ] 
 end 
 
Environment: The environment gives feedback on which opinion is correct and can be 
changed randomly or manually. 
 
 to check-environment 
   if environment = "Yellow is good" [ 
     set environmental 0  ; true means, yellow is good, yellow turtles will grow 
   ] 
   if environment = "Blue is good" [ 
     set environmental 1  ; false means, blue is good, blue turtles will grow 
   ] 
   if environment = "Avoid a lock-in" [ 
     if count turtles with [color = blue] >  (number-of-agents * 0.9 ) [set environmental 0] 
     if count turtles with [color = yellow] > (number-of-agents * 0.9) [set environmental 1] 
   ] 
 end 
 
In the model setup the user can determine the total number of agents (population) and 
choose how many of the agents (percentage of the population) are herding agents and how 
many agents (percentage of the population) are of a particular color, e.g. yellow, which 
represents the opinion of those agents. Conversely, all non-herding agents are swarming 
agents and all non-yellow agents have a different color, e.g. blue. 
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3.1 Swarming 
 
In the model setup the swarming agents are assigned the default shape (as birds) and 
randomly spread. When it is their turn to take action during the model simulation, each of 
them performs the following steps: The swarming agent looks for neighbors (other swarming 
or herding agents) within its vision. From these neighbors it selects one to point to and 
prefers a big one, which implies that this neighbor has been correct (feedback from the 
environment) during the previous time step. Then the swarming agent follows the one 
pointed to by copying the color of the selected neighbor. If there is no other agent within its 
vision, it maintains its previous color. When it receives feedback from the environment it 
grows if it has the correct color and it shrinks if it has the wrong color. When the movement 
button is switched on, the swarming agent moves according to the swarming dynamics, 
which are based on the flocking model from the NetLogo model library (Wilensky 1998). 
 
Why do swarming agents prefer to select a big neighbor?  
 
Every agent points to exactly one of the other agent whom he follows during a given time 
step or if nobody is in his vision he follows himself and maintains the color of the previous 
time step. When in a group only consisting of swarming agents each points to one of its 
neighbors they create at least one cycle in the network, which can be proven by complete 
induction.2 So it is not generally possible to rule out cycles in the SHE-Model. But to reduce 
the likelihood of local occurrences of cycles, in the simulations all swarming agents have a 
simple preference to locally choose a particular agent, if available. And this particular agent 
is coded to be a big one, an agent who had the correct opinion in the previous time step. This 
implementation increases the likelihood of an adaptive behavior in the simulations.  
 
 
3.2 Herding 
 
In the model setup herding agents are shaped as cows and randomly distributed in the 
NetLogo world. During the model run, when it is their turn to take action each of them 
performs the following steps: The herding agent evaluates which color is predominant among 
all other agents (all herding and swarming agents). Then the herding agent follows the 
masses by taking on that dominant color. When the feedback from the environment is 
received, the herding agent grows if he has the correct color and shrinks if he has the wrong 
color. When the movement button is switched on, the herding agent turns towards the 
average heading of all other agents (swarming and herding ones) and moves in that 
direction. 
 
 
3.3 Environment 
 
The environment is determined by the user through a button. The user can choose between 
three alternatives: either yellow or blue is set to be “good”, i.e. the correct opinion, or the 
feedback is generated to "avoid a lock-in", trying to avoid an opinion-lock-in at each time 
step. The setup allows for a manual change by the user through the interface between time 
steps. Also, the feedback can be evoked after changing the environment option on the 
interface. The environment provides feedback on the decisions the agents have taken so the 
agents with the correct opinion grow and the others shrink. The environment itself is not 
visualized in the SHE-Model simulations. The environment only feeds back on the opinions 
(colors) the agents have, so they either have the right opinion – then they grow – or they 
have the wrong opinion – then they shrink in size. 
                                                           
2 If there is at least one non-swarming agent in the SHE-Model that consequently is a herding agent 
and cycles are excluded, all swarming agents follow that one non-swarming agent, which can be 
proven by complete induction, too. 
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Why "avoid a lock-in"? 
 
When movement is switched on and herding is less than 50%, the swarming dynamics are 
so efficient in spreading the opinion favored by the environment that a collective-movement-
lock-in is very rare. It only occurs in 2.5% of the runs and only 0.03% of the runs with vision 
5. Therefore, I have created the chance of switching the environment to "avoid a lock-in", 
which implements the idea of trying to avoid an opinion-lock-in to allow in the simulations to 
reach a collective-movement-lock-in to analyze the swarming/herding dynamics more 
thoroughly. Consequently, when the "avoid a lock-in" option is selected for the environment 
on the interface, in the simulation the environment "switches" from "yellow is good" to "blue is 
good" when there are less than 10% of the population of agents left whose color is blue. That 
way a new round of opinion adaptation starts, trying to avoid the opinion-lock-in. The limit of 
10% is arbitrary but set up as a constant in the code3.  
 
 
4 Simulations and Results 
 
A few questions from the previous section still need to be answered: 
 
• Do the actions of a group of ideal type path-dependent agents always end up in a lock-

in? Are multiple outcomes possible (when aggregating from the micro level to the macro 
level)? 

• Are the opinion-dynamics self-reinforcing with the tendency towards a lock-in, thus, path-
dependent (for the final conclusion on the macro level)? 

• Finally if the chain of conclusion is proven: On which model variables do the social 
dynamics simulated with the SHE-Model depend in which way (to obtain information on 
potential real life behavior)? 

 
To assess whether the actions of a group of ideal type path-dependent agents always ends 
up in a lock-in in the simulations, all combinations of relevant variables need to be simulated 
in the NetLogo BehaviorSpace and it has to be noted if a lock-in occurs and which kind it is 
or if both lock-ins are reached at the same time step. An interesting feature of path 
dependence that is mentioned in the literature is that in the beginning of a process the final 
level of the lock-in cannot be predicted, i.e. multiple outcomes are possible and the process 
is not entirely deterministic (Arthur 1994, Verne & Durand 2010). To measure this chance for 
multiple outcomes in the model simulations at the state of the lock-in at the end of the 
simulation the final number of yellow agents is counted. The standard deviation can then 
show how strongly this final number of yellow agents then depends on the random spread of 
the agents at the beginning of the simulation. 
 
To assess whether or not the simulated opinion dynamics are path-dependent, in addition to 
monitoring the lock-ins, the dynamics along the way of reaching the lock-in need to be 
measured. Therefore, the number of steps until lock-in is counted and analyzed. The 
simulations are started with only one yellow agent, so then the opinion diffusion can be 
assessed by counting the number of steps until lock-in and noting the final number of yellow 
agents. If even in a changing environment always the correct opinion diffuses it can be 
concluded that the dynamics are self-reinforcing. 
 
                                                           
3 When analyzing the simulation results it can be concluded that for some visions the level of 10% is 
sufficient, for some it is too large and for others too small. E.g., for vision 5 it still happens very often 
that because of the larger radius of agents within vision an agent of the preferred color can be spotted 
by a larger group of agents who then all adapt to that opinion in the same time step. Thus, they can be 
more than 10% of the population and still produce an opinion-lock-in, exceeding the limit for an 
environmental change in the setting of "avoid a lock-in". 
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Finally, for real life applications it is interesting to obtain more information about the 
interdependencies of variables used for designing the simulated dynamics in the SHE-Model.  
 
Which variables affect the social dynamics in which way? 
 
 
4.1 What happens when a group of ideal type path-dependent agents interacts? 
 
This is the fundamental question of the SHE-Model. Following each other or the masses, the 
agents of the ideal type path-dependent can move around in a swarming or herding behavior 
and adapt to opinions from others. There are two basic dynamics that can occur in the 
simulations of the SHE-Model: Opinion dynamics that are marked by the colors and 
movements. While movements affect opinion dynamics, opinion dynamics do not affect 
movements (Tab. 1). And while the environment only affects the opinion dynamics, e.g. the 
vision affects both opinion dynamics and movements. 
 
When running the SHE-Model, first the setup creates the number of agents according to the 
pre-defined ratio of swarming and herding agents and spreads them randomly in the world. 
Also the initial heading of the agents is random. The agents are colored based on the pre-
defined percentage of yellow agents. Then the ideal type path-dependent agents are ready 
for the go-procedure. 
 
 
variables on the user 
interface 

opinion 
dynamics 

movements in the simulations 

number-of-agents has an effect has an effect 100 
percentage of herding 
agents 

has an effect has an effect 0-100 

percentage of yellow 
agents 

has an effect no effect 1 

environment has an effect no effect yellow is good,  
avoid a lock-in 

vision has an effect no effect 3-5 
movement has an effect has an effect none, swarming and 

herding 
show-links no effect no effect off 
minimum-separation has an effect has an effect 1 
max-align-turn has an effect has an effect 13.75 
max-cohere-turn has an effect has an effect 5.5 
max-separate-turn has an effect has an effect 1.5 
Table 1: Variables in the user interface, their effect on the opinion dynamics or movements 
and how they are set or changed throughout the simulations in the BehaviorSpace of 
NetLogo. 
 
 
To assess the movement and opinion dynamics that can evolve in a group of path-
dependent agents from a social simulation perspective, it is particularly interesting to vary the 
combination of agents and thus the percentage of herding versus swarming agents (Tab. 2) 
as well as the percentage of yellow versus blue agents. At which constellation do significant 
effects occur? 
 
Furthermore, to analyze the number of steps it takes until the population reaches a lock-in it 
is important to know how quickly a preferred opinion spreads throughout the population. 
Therefore, the agent's vision (Tab. 2) is an important variable to vary in order to check the 
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dependence on single agent's characteristics versus the effects of initial group constellations 
such as the percentage of herding agents. 
 
Especially when analyzing the dynamics that lead to a collective-movement-lock-in, it helps 
to be able to change the environment variable during the run of a simulation to avoid an 
opinion-lock-in prior to the collective-movement-lock-in. 
 
To focus on these variables in the assessment of path-dependent processes, the other four 
variables shaping the movement, which are minimum-separation, max-align-turn, max-
cohere-turn, and max-separate-turn, are held constant. Therefore, simulations are performed 
for the following combinations of variables: 
 
 

  no movement  with movement  with movement 
"avoid a lock-
in" 

  vision vision vision 
  3 3.5 ... 5 3 3.5 ... 5 3 3.5 ... 5 
percentage 
of herding 
agents 

0             
1             
...             
100             

Table 2: The SHE-Model is run using the BehaviorSpace of NetLogo with 1,000 runs for 
each of the combinations denominated in this table. 
 
 
1,000 individual simulation runs are performed for each combination, so there are 1,515,000 
runs in total (Tab. 2). During the runs the number of steps until the lock-in is recorded as well 
as the type of the lock-in, and the final number of yellow agents at the moment when the 
lock-in is reached (results can be found in Fig. 2, Fig. 3, and Figs. 5-7). Afterwards the 
standard deviations of the number of steps until lock-in and of the final number of yellow 
agents are also calculated. The standard deviation is used for inferences on the relevance of 
the random spread at the beginning of each run and thus of the relative starting positions of 
the agents. 
 
 
4.2 What are the key findings? 
 
In the situation of the opinion-lock-in either all agents have the same color or there are 
agents who cannot reach out to adapt to the environment anymore. Therefore, there are a 
number of agents of one color left that cannot change anymore (cf. e.g. Fig. 4). In the 
situation of a collective-movement-lock-in all agents have the same heading so they move 
collectively in the same direction and their positions relative to each other do not change 
anymore. If a collective-movement-lock-in occurs there could also be an opinion-lock-in in 
the cases, when the number of agents of one color does not change anymore. But a 
collective-movement-lock-in can also happen without an opinion-lock-in if the number of 
agents of one color changes periodically within a frequently changing environment. 
 
Without movement in the simulations there is always an opinion-lock-in and no collective-
movement-lock-in (Fig. 2). The latter is very improbable because the headings of the agents 
do not change and a collective-movement-lock-in in the case of no movement implies that all 
agents have the same heading from the very beginning, which is extremely unlikely for 100 
agents with randomly set up headings. With movement, the collective-movement-lock-in still 
occurs rather seldom (Fig. 3, left): for shares of herding agents below 40% there is hardly 
ever a collective-movement-lock-in. For larger shares of herding agents the collective-
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movement-lock-in occurs more often, with a maximum for 50% herding agents, when almost 
always a collective-movement-lock-in occurs (Fig. 3, middle left). For even larger shares of 
herding agents a collective-movement-lock-in occurs with a decreasing tendency. The 
reason is that the very step when in a simulation with a share of 50% herding agents the 
masses change their mind, the group already reaches an opinion-lock-in. With movement 
switched on and the herding agents set up randomly in the world, the swarming agents are 
likely to follow herding agents. Partly clustered in swarms the swarming agents locally 
approach the heading of the herding agents while the herding agents only change their 
headings in tiny nuances as long as the swarming agents differ. For shares of herding agents 
that are larger than 50% the herding agents never change their opinion but with the masses 
heading in one direction anyway a collective-movement-lock-in can be approached 
sometimes even more quickly than an opinion-lock-in (Fig. 3, left). Only for shares of herding 
agents between 60% and 90%, there is a chance for a collective-movement-lock-in without 
an opinion-lock-in, which occurs up to about 20 times in 1,000 simulations (Fig. 3, top left).  
 
 

 
Figure 2: Overview of potential lock-ins in situations of no movement or with movement 
including the case with movement and the environmental setting of "avoid-a-lock-in". 
 
 

 
Figure 3: Percentage of the number of runs of the SHE-Model with movement that result in 
an opinion-lock-in (top), in a collective-movement-lock-in (middle), or in both at the same 
time (bottom) plotted in dependence on the share of herding agents (x-axis). On the left, the 
SHE-Model is run without avoiding a lock-in; on the right, the environmental setting is „avoid 
a lock-in“.  
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4.2.1 No movement 
 
When running the SHE-Model in a set environment an opinion-lock-in occurs quickly if there 
is no movement (Fig. 5, left). In the situation of the lock-in either all agents have the same 
color or there are agents who cannot reach out to adapt to the environment anymore. 
Consequently, the number of agents of one color can no longer change (Fig. 4). 
 
 

 
Figure 4: Example of an opinion-lock-in without all agents having the same color. Screenshot 
of the model world after 11 ticks when the opinion-lock-in is reached with a final number of 
38 yellow agents and without a collective-movement-lock-in. The starting variables have 
been: Number of agents: 100, percentage herding: 10%, percentage yellow: 1%, 
environment: "yellow is good", vision: 3.5, movement: none, show-links: on, minimum 
separation: 1, max. align turn: 13.75, max-cohere-turn: 5.5, max-separate-turn: 1.5.  
 
 
A clear trend can be observed: the higher the percentage of herding agents, the lower the 
average number of steps until lock-in. However, for visions of 4.5 and 5 at first a slight 
increase in steps until lock-in occurs up to about a share of 35% or 45% herding agents (Fig. 
5, top left). 
 
The reason is that for visions of 4.5 and 5 nearly all agents are reached if the percentages of 
herding agents are low because swarming is very efficient for large visions. Thus, for low 
percentages of herding agents they rather obstruct the swarming agents (especially locally) 
because they do not adapt to changes in the environment like the swarming agents. When 
the average of the final number of agents with a correct opinion decreases (significantly) 
(Fig. 5, top right), the average number of steps until lock-in also decreases (with increasing 
percentage of herding) (Fig. 5, top left) because on average fewer steps are needed to reach 
fewer agents. 
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Figure 5: Results of the runs of the SHE-Model without movement plotted in dependence on 
the share of herding agents (x-axis), averaged over 1000 runs for each combination. On the 
left: average steps till lock-in (top), average standard deviation for steps till lock-in (middle), 
maximum steps till lock-in (bottom); on the right: average percentage of final yellow agents 
among the entire population (top), average standard deviation of the number of final yellow 
agents (middle), maximum percentage of final yellow agents among the entire population 
(bottom).  
 
 
The number of steps until lock-in significantly depends upon the spread of agents in the 
world (Fig. 5, middle left). For visions 3 and 3.5 the standard deviation for the average 
number of steps until lock-in is largest for small shares of herding agents. In that case the 
herding agents even have a positive effect on the number of steps because for small visions 
herding agents can help to reach remote regions and a larger spread more promptly (Fig. 5, 
top left). If not all agents are reached despite larger numbers of herding agents (Fig. 5, top 
right) it is likely that either single agents are too distinct and far away, which depends on the 
spread of agents in the setup and is documented by the standard deviation (Fig. 5, middle 
right), or not even all herding agents are reached, which implies that less than half of the 
agents are finally reached (yellow) (Fig. 5, top and bottom right). In the latter case the 
herding agents can practically block swarming agents and prevent their contact with other 
yellow agents, diminishing their ability to adapt. Especially if the share of herding agents is 
close to but still below 50%, the herding agents can block the swarming agents or 
significantly increase the distance they have to cover before getting in touch with other 
swarming agents because they have to find their way around the herding agents. If the share 
of herding agents is larger than 50% they definitely do not adapt to a changing environment 
themselves in any case (Fig. 5, bottom left). And a large share of herding agents can 
effectively disconnect and thereby prevent some of the swarming agents from adapting. 
Thus, the total number of agents that is potentially able to adapt is smaller than the initial 
group size. Furthermore, they reach a lock-in more quickly, which is particularly the case for 
large shares of herding agents (Fig. 5, bottom right). 
 
The maximum number of steps until lock-in depends significantly on the spread of agents in 
the world (Fig. 5, middle left). The maximum number of agents reached significantly depends 
on the percentage of herding agents and the extent of vision of each agent (Fig. 5, bottom 
right). 
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4.2.2 With movement – swarming and herding in a "yellow is good" environment 
 
If movement is switched on in simulations that are comparable to the experiments without 
movement, the opinion-lock-in is more likely to reach all agents (cf. Figs. 5 and 6, top and 
bottom right), and in cases of a share of herding agents larger than 50% at least all swarming 
agents. However, this does not have to be quicker (cf. Figs. 5 and 6, top and bottom left) 
because more agents need to be reached and the movement clustered in swarms could 
prevent groups of agents to actually meet the agents of the environmentally preferred 
opinion. Theoretically, even with movement in a fixed environment there are cases possible 
with a low density and a relatively small vision that leads to an opinion-lock-in without all 
agents having the same color or where it takes very long until the color is finally spread 
completely: For example, let there be a population of two swarming agents of different colors 
with different headings (if they had the same heading, they would be in a collective-
movement-lock-in, which is considered later on). Then depending on the starting distance 
between the agents, their velocity, and the angle between the lines of their movement, it 
might take very long until they meet. There may also be cases, in which they never meet 
because they move periodically. If they meet they adapt to the preferred color resulting in an 
opinion-lock-in of all having the same color. If they never meet, the result is an opinion-lock-
in with different colors. 
 
But if the population is large enough and the density is sufficient for the swarming and 
herding mechanisms to be effective, the movement leads to quicker lock-ins and in the state 
of the lock-in all agents have the same color. 
 
 

 
Figure 6: Results of the runs of the SHE-Model with movement but without avoiding a lock-in 
plotted in dependence on the share of herding agents (x-axis), averaged over 1000 runs for 
each combination. On the left: average steps till lock-in (top), average standard deviation for 
steps till lock-in (middle), maximum steps till lock-in (bottom); on the right: average 
percentage of final yellow agents among the entire population (top), average standard 
deviation of the number of final yellow agents (middle), maximum percentage of final yellow 
agents among the entire population (bottom).  
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4.2.3 Movement without avoiding a lock-in 
 
Both the average number of steps (Fig. 6, top left) and the average number of finally reached 
(yellow) agents (Fig. 6, top right) significantly depend upon the percentage of herding agents. 
Especially, the maximum number of finally reached (yellow) agents does not depend on the 
vision anymore at all but only on the share of herding agents (Fig. 6, top right). The standard 
deviation of the average number of finally reached (yellow) agents (Fig. 6, middle right) 
depends upon the vision but only if the share of herding agents is lower than 50%. 
Considering the average or maximum number of steps until lock-in (Fig. 6, middle and 
bottom left), these are clearly affected by the vision: more steps are needed for smaller 
visions and fewer steps for larger visions, showing a higher level for shares of herding agents 
that are larger than 50%. 
 
 

 
Figure 7: Results of the runs of the SHE-Model with movement and in the „avoid a lock-in“ 
environment plotted in dependence on the share of herding agents (x-axis), averaged over 
1000 runs for each combination. On the left in a logarithmic scale: average steps till lock-in 
(top), average standard deviation for steps till lock-in (middle), maximum steps till lock-in 
(bottom); on the right: average percentage of final yellow agents among the entire population 
(top), average standard deviation of the number of final yellow agents (middle), maximum 
percentage of final yellow agents among the entire population (bottom). 
 
 
4.2.4 Movement, swarming and herding while avoiding a lock-in 
 
In case of swarming and herding in an "avoid a lock-in" environment the vision hardly matters 
(Fig. 7) despite the fact that for a vision larger or equal to 4 the logarithm of the average 
number of steps shows a significant change in behavior at a share of herding agents of 50% 
(Fig. 7, top left). For a percentage of herding agents smaller than 50%, the average share of 
finally yellow agents is around 50% for all visions, which is half of the total population size 
(Fig. 7, top right). This is not a surprise because throughout the simulation the environment 
can change and it is random which color finally is environmentally preferred when the lock-in 
occurs. But there is a clear maximum for the average final number of yellow agents for each 
vision. This maximum is higher and more pronounced the larger the vision is. Furthermore, to 
reach that maximum a larger share of herding agents is necessary for larger visions, 
approaching 50% from below. This is due to the fact that the closer the share of herding 
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agents gets to 50% the more likely it is that the entire population enters the lock-in during the 
very step, in which the herding agents change their mind. And because of the setup rule for 
the environment to switch to the other color as preferred one whenever there are less than 
10% of the agents of that color left, the environment does not change but the population 
rather locks-in with the preset environment, which is "yellow is good", for a share of herding 
agents that is close to 50%. The same argument about the environment holds for shares of 
herding agents that are larger than 50%. Therefore, the graphs for those cases do not differ 
from the ones with movement without avoiding a lock-in (cf. Figs. 6 and 7). 
 
The standard deviation for the average number of final yellow agents is larger for shares of 
herding agents that are smaller than 50% than for shares that are larger than 50% (Fig. 7, 
middle right). And it increases the larger the vision becomes. The latter is especially 
interesting because for movement without avoiding a lock-in this correlation is the opposite 
way: it increases the smaller the vision becomes (Fig. 6, middle right). The explanation is that 
in the setting of "avoid a lock-in" the environmental preference for yellow or blue changes. 
And for shares of herding agents that are smaller than 50% the environment changes 
frequently from "yellow is good" to "blue is good" and back. It is more likely that not all agents 
are finally reached in the final environment right before the lock-in for a smaller vision than 
for a larger vision, comparable to the other simulations with movement and without a 
changing environment. But "all agents reached" can differ between zero, which corresponds 
to the case that all agents are finally yellow in a "blue is good" environment, and 100, which 
represents the case that all agents are finally yellow in a "yellow is good" environment. 
Therefore, the spread of results and thus their associated standard deviation is larger for 
larger visions and smaller for smaller visions (Fig. 7, middle right). 
 
 
4.3 Implications for the chain of reasoning 
 
4.3.1 Is a lock-in always reached? Are multiple outcomes possible with regard to the 
final share of colors? 
 
In the SHE-Model there are two components that can cause a global lock-in: The opinion 
dynamics (colors) and the structure (spatial network or collective movement). The lock-in is 
defined as the inability to adapt to a changing environment. Considering the opinion 
dynamics, in the SHE-Model simulations the ideal type path-dependent agents reach a lock-
in when all agents have the same opinion. Or a lock-in can already be reached through 
structural effects in spatial networks or collective movement if in all discrete parts of the 
model world all agents locally share the same opinion. In the model simulations run with the 
SHE-Model and analyzed in the previous section a lock-in has always occurred (Figs. 2 and 
3). 
 
A non-moving spatial network is structurally inflexible. Depending on the distance of 
swarming agents and their vision it can happen that there are parts of the network that are 
blue and others are yellow and there is no way that each of the parts can adapt to the other 
(Fig. 4). In a moving network this particular situation seems less likely but still there are 
simulations of the SHE-Model, in which opinion dynamics are limited because all agents 
move in the same direction in one collective movement and the distances between them 
remain constant (Fig. 3, middle). So there are even cases of collective movement, in which 
colors may be locally different from the rest of the world but they are unable to spread out 
when the collective-movement-lock-in is reached (Fig. 3, bottom). Therefore, they cannot 
adapt to a changing environment anymore and also an opinion-lock-in is reached 
concurrently. 
 
In the setup of the SHE-Model all agents are distributed randomly. And also their heading is 
initially random. Consequently, just based on the ratio of herding to swarming agents or the 
initial number of yellow or blue agents it cannot be predicted at which ratio of blue to yellow 
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the agents will lock-in or in which direction the population is finally heading when the lock-in 
is reached via the collective movement. This guarantees the possibility of multiple outcomes. 
 
 
4.3.2 Are the opinion dynamics simulated with the SHE-Model path-dependent? 
 
To answer this question, in addition to the previously analyzed tendency towards a lock-in it 
needs to be assessed whether or not the opinion dynamics are self-reinforcing. Well, they 
are: If there are more than 50% herding agents in the population, the masses consisting of 
the herding agents reinforces the predominant color. If there are less than 50% herding 
agents in the population, the environment enforces the correct color. Swarming agents 
spread the correct color within their reach and thus reinforce the color via the hierarchical 
structure of the bottom-up network. The spatial hierarchical structure has the effect that the 
larger the group of agents of the correct color is, the higher the probability becomes for the 
rest of the agents to adapt to that color. The lock-in can occur before all agents are reached 
as described above. But nevertheless, before the lock-in the opinion dynamics are self-
reinforcing. 
 
Therefore, the path dependence experiment using the SHE-Model is comparable to the path 
dependence experiments by Arthur (1994). This is important because this proves that the 
definition of path dependence at the micro level is a coherent extension of the concept of 
path dependence at the macro level (concept by e.g. Arthur 1994; David 2001). 
 
 
5 Conclusion 
 
The SHE-Model presented in this paper can be used as a local approximation of path-
dependent behavior, so the social dynamics that are simulated with the SHE-Model 
approximate real life behavior. This is deduced in a chain of reasoning for opinion dynamics 
simulated with the SHE-Model. Starting with a definition of a path-dependent process, in this 
paper it is assumed that path-dependent processes exist. On this basis a former deduction 
(Kominek 2012) is used to deduce an ideal type path-dependent who basically performs 
following behavior. Therefore, where people in real life are affected by a path-dependent 
process, their behavior is shaped in a way that they tend to follow others. This following 
behavior is implemented in the SHE-Model to assess what dynamics can evolve from this 
kind of behavior to address the question: What is the implication of path-dependent 
processes on opinion dynamics in real life? 
 
For opinion dynamics the chain of reasoning can be completed from the macro to the micro 
level and back to the macro level including the SHE-Model for aggregation. And for opinion 
dynamics even the opposite direction of conclusion holds true, which implies that the 
dynamics simulated with the SHE-Model can be used as local approximation for path-
dependent processes that are in or close to a lock-in. This reveals great chances for real life 
application even though the SHE-Model presented in this paper is only a basic model: 
Swarming and herding behavior consist of very simple rules. But this is also the strength of 
the model that even these basic rules lead to a model that fulfills the chain of reasoning that 
allows the use of the model as an approximation. 
 
In the future the SHE-Model can be fine tuned to improve the approximation of real life 
behavior while at each step of changing the model one needs to check whether the chain of 
reasoning still holds true to prove its real life applicability. And in case studies applications of 
the SHE-Model can assess how precise an approximation of real life behavior already is 
using this basic model. This may reveal in which direction further fine tuning is necessary. 
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