Drought, Political Exclusion, and Civil War

Motivation

- Abrupt climate change may lead humanity into "constant battles for diminishing resources" (Schwartz & Randall, 2003)
- Climate change is an "all-encompassing threat" to human health, to global food supply, and to peace and security (Annan, 2006)
- "Climate change will help produce [..] insurgencies, genocide, guerrilla attacks, gang warfare, and global terrorism" (Homer-Dixon, 2007)
- Darfur is the first of many climate wars (Ban Ki-Moon on various occasions)
- Climate change may result in "increased danger of violent conflicts and wars, within and between states" (Mjøs, 2007)
- Climate change, through drought and crop failure, "breeds hunger and conflict" (Ohama, 2009)

Trends in climate change and armed conflict

Armed conflicts across the globe

Africa

- 1/3 of African people live in drought-prone regions
- Only 4% of arable land in SSA is irrigated
- Large agricultural sector, subsistence economies
- Home to almost half of all active armed conflicts
- Global warming is likely to lead to a drying of northern and southern Africa; East Africa might get more rain
- → General acceptance that Africa will be affected by future global warming first and most severely

Previous research

- Case-based Environmental Security literature contains several narratives of violent conflict within the context of resource competition and environmental degradation
- Quantitative research on a scarcity-conflict connection suffers from poor data and inappropriate research designs
- Some indication that rainfall 'shocks' increase risk of civil war through poor economic growth (Miguel et al. 2004)
- Incompatibilities of scale: case literature studies local dynamics,
 large-N literature focuses on countries
- Political conditions often downplayed or ignored; yet, almost all allegedly scarcity-driven conflicts involve politically marginalized populations, and these populations are those hardest hit by shocks

Research design

- Ambition: provide a rigorous empirical test of central Environmental Security propositions:
 - Drought increases the local risk of civil armed conflict
 - The risk-inducing effect of drought is strongest in areas inhabited by politically marginalized populations
- Sample: Africa 1960-2006
- Unit of analysis: 0.5° grid cell, yearly observations
- Dependent variable: armed intrastate conflict outbreak (geocoded)
 (UCDP/PRIO armed conflict data. >25 battle-deaths threshold.)
- Numerours measures of annual precipitation deviations plus drought indicators (SPI) that capture within-year variations

PRIO Grid 0.5° resolution

Average annual precipitation

Changes in precipitation, 1951-2004

Preliminary inspection

	Ethnic Group in Power		Marginalized Ethnic Group	
	No drought _{t-1}	Drought _{t-1}	No drought _{t-1}	Drought _{t-1}
No onset	101,257	23,104	190,487	43,328 (99.972%)
	(99.991%)	(100%)	(99.980%)	
			39	
Onset	9	0	(0.020%)	12
	(0.009%)	(0%)		(0.028%)
Total	101,266	23,104	190,526	43,340
	(100%)	(100%)	(100%)	(100%)

Full model

	(1)	(2)	(3)
VARIABLES	onset	onset	onset
SPI drought current year		-0.377	-0.364
		(0.339)	(0.357)
EGIP	-1.364**	-1.381**	-1.368**
	(0.419)	(0.421)	(0.454)
EGIP × SPI-drought			-0.107
			(1.152)
Distance to border (In)	-0.287**	-0.288**	-0.288**
	(0.097)	(0.098)	(0.098)
Capital city	1.970**	2.003**	1.999**
	(0.484)	(0.476)	(0.480)
Population cell (log)	0.445**	0.447**	0.447**
	(0.097)	(0.097)	(0.097)
GDP per capita t-1 (log)	-0.232	-0.235	-0.235
	(0.226)	(0.228)	(0.229)
Polity2 t-1	0.004	0.005	0.005
	(0.022)	(0.022)	(0.022)
Brevity of peace	-0.094	-0.088	-0.088
	(0.403)	(0.407)	(0.407)
Constant	-7.062**	-6.990**	-7.000**
	(2.177)	(2.188)	(2.205)
Observations	18,214	18,214	18,214
Log pseudolikelihood	-355.589	-355.023	-355.019

Drought measures

VARIABLES	Coefficient	Std. err.
Drought, t	-0.377	(0.339)
Drought, t-1	-0.083	(0.304)
Drought, t-2	0.190	(0.276)
Drought recorded in t-3 to t period	0.155	(0.278)
Number of drought events from t-4 to t	-0.007	(0.099)
Distance to nearest drought event, t (log)	0.028	(0.054)
Distance to nearest drought event, t-1 (log)	0.023	(0.061)
Distance to nearest drought event, t-2 (log)	-0.021	(0.065)

Table 2: Drought measures (cont'd)

VARIABLES	Coefficient	Std. err.
Rainfall deviation from mean, t (%)	0.002	(0.005)
Rainfall deviation from mean, t-1 (%)	-0.006	(0.004)
Rainfall deviation from mean, t-2 (%)	-0.001	(0.009)
Δ Rainfall, t (%)	0.392	(0.258)
Δ Rainfall, t-1 (%)	0.196	(0.464)
Δ Rainfall, t-2 (%)	0.352	(0.699)
UNEP drought, t	-0.988	(1.060)
UNEP drought, t-1	-1.062	(1.063)
UNEP drought, t-2	-0.214	(0.744)

Numerous interaction effects (notably political exclusion, poverty, democracy) and alternative sample inclusion criteria also explored without finding any significant coefficients

Preliminary conclusions

- No evidence that below-average precipitation or severe drought events have a systematic bearing on the risk of civil war onset in Africa
 - Droughts are frequent, conflicts are rare
 - Long-term effects and migration not explored
- Political exclusion is a powerful risk factor that should not be ignored
- Future priorities:
 - Get better data on environmental vulnerability
 - Excplore consequences of drought for conflict dynamics
 - Explore consequences of conflict for vulnerability (famine, diseases, etc)
 - Explore other forms of violent conflict (e.g. communal conficts)
 - Couple with data on likely changes in future precipitation patterns

