ROUTINE VIOLENCE IN THE JAVANESE DISTRICTS: NEO-MALTHUSIAN AND SOCIAL JUSTICE PERSPECTIVES

Mohammad Zulfan Tadjoeddin Anis Chowdhury

University of Western Sydney

20 November 2009

The context

- Routine and episodic violence:
 - O Low profile routine \rightarrow Java
 - High profile <u>episodic</u> (secessionist & ethnic) → off Java
- Java island
 - Densely populated
 - 128 million people
 - The most populous island on earth
 - 20% youth (15-25 year old)
 - Ethnically homogeneous
 - 85% share of two dominant ethnic groups (Javanese and Sundanese)
 - Higher homogeneity at district level. Ethnic Javanese accounts for more than 95% in more than two-third of districts in the provinces of Central and East Java.

Indonesia and Java

The focus

The two characteristics of Java lead us to the following two explanatory factors of routine violence:

- Population pressure
- Vertical inequality

(1) Population pressure

- Neo-Malthusian conflict scenario
 - OSocial stress due to population pressure
 - population density and growth
 - youth bulges
- Marginal support at cross-country empirical study
- More support at cross-sectional observation in a single country, as this study show

(2) Vertical inequality

- Inequality and conflict in cross-country study on civil war
 - O The role of vertical inequality in conflict is rejected by Collier-Hoeffler (1998, 2004) and Fearon-Laitin (2003)
 - At best, the role is inconclusive
 - It is not *vertical* inequality that matters, it is *horizontal* inequality (Frances Stewart, 2000, 2008)
- This study finds vertical inequality does matter
 - On low profile routine violence
 - In a single country study

The Objective

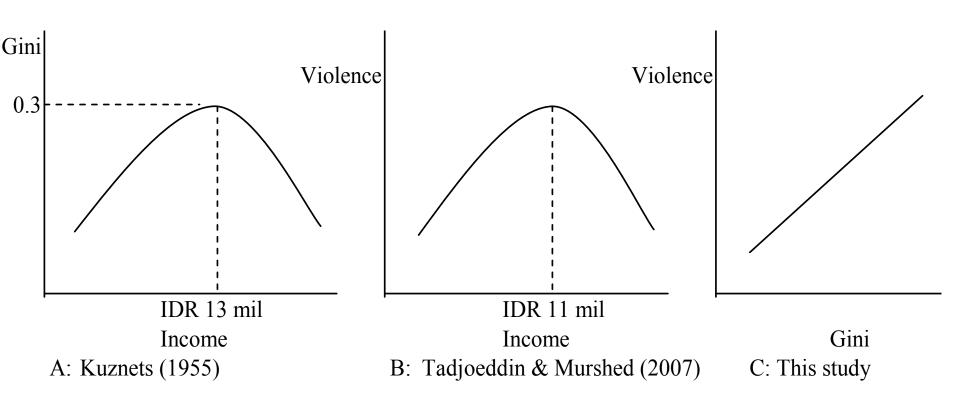
To examine the role of population/ demographic factors and vertical inequality, and their possible *joint effects* on routine violence across Javanese districts.

Hypotheses

- H1: Districts that experience higher population pressures tend to experience higher level of routine violence incidence.
- H2: Positive joint effects among population pressure indicators.
- H3: Vertical income inequality would have a positive effect on routine violence.
- H4: Positive effects of vertical inequality are higher in a district (region) with higher degrees of population pressure.

Research design

- Panel dataset of 98 districts, 1994-2003.
- Fixed effects negative binomial.
- Models:
 - Violence = (population pressure, controls)
 - Violence = ($\underline{inequality}$, controls) \rightarrow 2-stage process
 - Inequality = (income, income²) \rightarrow Kuznets hypothesis
 - Violence = (pop. pressure*inequality, controls)


Results (1)

- Support for the neo-Malthusian conflict scenario with regard to population density variable only (H1)
- Significant join effect of population density and growth (H2).

Results (2)

- Positive effect of inequality on routine violence (H3), through the workability of the Kuznets curve (two-stage process).
- The violence inducing effect of inequality helps to explain the Tadjoeddin and Murshed's (2007) finding on the inverted-U-shaped relationship between violence and income.
- Inequality effects work at the upswing as well as at the downswing parts of the inverted-Ushaped curve of violence and income

Violence, Gini &Income

Result (3)

- Support for H4, positive joint effect between inequality and population density.
- This means that violence inducing risk of higher inequality is aggravated if it coincides with higher population density.

Conclusion

- Neo-Malthusian conflict scenario in the densely populated Java.
- Role of vertical inequality in routine violence.
- The inherent Kuznets process by which inequality aggravates violence.
- Unsafe mix of population pressure and inequality.

Population pressure and violence

									-					
	1		2		3		4		5		6		7	
Pop density (000/km2)	0.069	**					0.087	**	0.087		0.031		0.081	**
	0.032						0.038		0.142		0.042		0.038	
Youth bulges (15-25)			0.015				-0.013		-0.013		0.002		0.002	
			0.023				0.026		0.033		0.026		0.032	
Pop growth (%)					0.032		0.076		0.076		-0.076		0.323	
		<u>'</u>			0.052		0.060		0.061		0.079		0.317	
Density*Youth									0.000	_				
									0.006					
Pop Density*Growth											0.052	_		
											0.015			
Youth*Pop growth													-0.010	
													0.013	_
Pop (mil)	0.557	***	0.573	***	0.367	***	0.353		0.353		0.334	_	0.337	_
	0.108		0.107		0.106		0.109		0.109	_	0.110		0.110	
Growth	-0.034	***	-0.033	***	-0.034	_	-0.032	_	-0.032	_	-0.034	_	-0.032	***
	0.005		0.005		0.005		0.005	_	0.005	_	0.005	_	0.005	
Income (IDR million)	0.191	*	0.247	***	0.247	**	0.154	-	0.154		0.198		0.158	
	0.108		0.106		0.105		0.110		0.111		0.112		0.111	
Income2	-0.015		-0.016		-0.016		-0.013		-0.013		-0.014		-0.013	
	0.011		0.011		0.011		0.010		0.010		0.010		0.010	
Obs	980		980		980		980		980		980		980	
Wald χ^2 (p-value)	0.000		0.000		0.000		0.000		0.000		0.000		0.000	

Two-stage regression

Second stage - Fixed effects NB

	Violence				
Gini-predicted value	24.266	**			
	9.681				
Growth	-0.035	***			
	0.005				
Pop (mil)	0.388	***			
	0.106				
Obs	980				
Wald χ^2 (p-value)	0.000				

First stage - pooled OLS

	Gini
Income	0.0094 ***
	0.0013
Income-squared	-0.0004 ***
	0.0001
Obs	980
R-squared	0.054

2SLS as a robustness check

Violence		
gini	46.4997	***
	13.7545	
grgdp	-0.0752	***
	0.0149	
popm	1.8642	***
	0.1390	
Gini		
Income	0.0013	***
	7.5300	
Income-squared	-0.0004	***
	0.0001	
Obs.	980	

Join effects of Gini*population pressure

	1		2		3		
Gini-predicted value	22.937	**	16.1926		21.728	**	
	9.957		10.5498		10.545		
Growth	-0.034	***	-0.0337	***	-0.035	***	
	0.005		0.0048		0.005		
Pop (mil)	0.390	***	0.3587	***	0.381	***	
	0.106		0.1078		0.107		
Ginihat*popgrowth	0.095						
	0.175						
Ginihat*popden			0.0002	**			
			0.0001				
Ginihat*youth					0.051		
					0.081		
Obs	980		980		980		
Wald χ^2 (p-value)	0.000		0.000		0.000		