Climate Change, Social Stress and Violent Conflict State of the Art and Research Needs

> KlimaCampus, Hamburg University Nov 20, 2009

Exploring the relationship between climate awareness and adaptation efficacy for anticipatory adaptation against the impacts of sea level rise on livelihood security in coastal Bangladesh

> Md. Mustafa Saroar & Prof. Dr. Jayant K. Routray School of Environment, Resources and Development (SERD) Asian Institute of Technology (AIT), Bangkok, Thailand

Section	Key focus
1	Statement of the Problem and Objective,
2	Research Hypothesis
3	Research Design: Data collection, Indicator selection, and Statistical tests for reliability and usability of data.
4	Principal Component Analysis (PCA) for identifying the factors that explain the variances
5	Result and Discussion: Multiple OLS Regression Model's Output
6	Policy implications and concluding remarks
	Future research direction

- 1. Statement of the Problem:
- □ IPCC unequivocally states that Climate is changing (IPCC, 2007).
- Climate change- changes in long term average conditions, greater variability within the range of "normal conditions" and changes in the types of extreme events (Hare, 1991).
- Climate change may leads to SLR of even 1 meter by the end of this century.
- Bangladesh is one of the few countries most vulnerable to SLR impacts.
- SLR impacts: Increase frequency and intensity of storm and surge, perpetual salinity intrusion, coastal inundation,
- Failure to adapt will lead to mass displacement; ultimately CC-SLR refugee.

- 1. Statement of the Problem:
- □ For adaptation *in situ* strong "adaptation efficacy" is a precondition (Grothmann and Patt 2005; Grothmann and Reusswig, 2006)
- Adaptation efficacy is personal belief about one's ability to adapt considering the full context of vulnerability.
- Various socio-economic (Adger, 2003, 2005; Brooks et al. 2005; Steel et al. 2005; Leiserowitz, 2006), cultural and behavioral (Adger, 2003, 2005; Brooks et al. 2005; Grothmann and Patt 2005; Grothmann and Reusswig, 2006; Blennow and Persson 2009), and communications and networking (Mimura, 1999; Steel et al. 2005; Kurita *et al.*, 2006; Perry, 2007; Collins and Kapucu, 2008; Cretikos *et al.*, 2008; Leal, 2009) factors influence adaptation efficacy.
- However, influence of climate knowledge on adaptation efficacy is not assessed quantitatively.

Objective of the Research

□ This research is aimed to explore if adaptation efficacy of coastal people of Bangladesh to secure their livelihood against the impact of CC-SLR is influenced by "climate awareness".

Research Hypothesis

 "Climate awareness" has positive influence on adaptation efficacy (H1).

Research Design

Data and information gathering:

Altogether 285 HH were randomly selected for questionnaire survey. All respondents are from 3 sites (Dhulashar UP, Mithaganj UP and Nilganj UP) in Kalapara Upazila (Sub-district) of Patuakhali District. Located only 5 to 20 km from the coastline and above 0.25 m (contour) from MSL. Study sites in relation to Bangladesh:

Indicator selection for climate awareness:

Climate awareness is measured in three dimensions:

Familiarity with climate change/weather extreme signal (*in short "familiarity"*)
 Perception about climate change-sea level rise (CC-SLR) events (*in short "perception"*)

□ Tacit/intuitive knowledge about the impacts of sea level rise (in short "knowledge"

Dimension	Reliability (Cronbatch alfa)	Indicator used to prepare index
1. Experience/ Familiarity with CC/Weather extreme	0.93	10 questions [following IPCC: WG II 2001b: 15; Vedwan and Rdoades, 2001; Adger <i>et al.</i> , 2003: 182-183; and Nerem <i>et al.</i> 2006: 5-7]
2. Perception/ belief about CC- SLR events	0.71	5 questions [following Steel et al. (2005: 43, 48), Leiserowitz (2006: 65-66), Blennow, and Persson (2009: 101)
3.Tacit/intuitive knowledge about SLR impacts	0.75	 10 questions [Following Smith (1997: 252), Choudhury <i>et al.</i> (2005), Steel et al. (2005: 43, 48), Wilbanks <i>et al.</i> (2007: 216-218) and Tol <i>et al.</i> (2008: 438-439)

7

Scale of measurement of	Indicator/Variable
Familiarity with climate change/weather extreme signal	Respondent's familiarity with:
Scale:	Longer duration of summer
1 = Cannot remember if heard about/felt or observed	Summers are felt warmer than earlier
2 = Heard from others	Shorter duration of winter
3 = Felt/observed by own	Winters are getting less cooler than earlier
	Winter starts late than the normal timing
	Untimely rain fall are more pronounced than earlier
	Frequency of stormy even is increasing
	Salinity of water in rivers & canals are increasing
	High tides are encroaching new and new areas
	Migratory birds are less seen in winter than earlier
Note: In each cases to summarize the scale value	x = 1, 2, 3 are weighted as $(1/3 = 0.33, 2/3 = 0.67, and 3/3 = 1$ respectively)

Scale of measurement of	Indicator/Variable						
Perception about CC-SLR event	Respondent's perception about:						
Scale:	Accelerated sea level rise						
1 = There is doubt; no need to think at all	Rapid/more inward shift of coastline						
2 = Distant and uncertain; still we may start thinking if really happen	Permanent encroachment of new areas by saline water						
3 = We must act from now no matter the extent of uncertainty	Increased frequency & magnitude of stormy even and surge						
	Acute scarcity of salt free/sweet water for drinking						
	Acute scarcity of salt free/sweet water for drinking						
Note: In each cases to summarize the scale value 1, 2, 3 are weighted as $(1/3 = 0.33, 2/3 = 0.67, \text{ and } 3/3 = 1 \text{ respectively})$							

Scale of measurement of	Indicator/Variable
Tacit/intuitive knowledge about SLR impact	Respondent's ability to identify at least 1 potential negative impact of SLR associated with:
Scale:	Crop production/horticulture
1 = No/inaccurate response	fisheries
2 = Accurate response but only able with the aid of surveyor	Livestock
3 = Accurate response without any aid	Settlement/homestead
	Physical infrastructure
	Off-farm economic activity
	Public health
	Social mobility
	Other than the above
	Ability to identify positive impact of any kind

Measuring Adaptation efficacy:

Dimension	Reliability (Cronbatch alfa)	Indicator used to prepare index
Adaptation efficacy	0.75	5 questions [Following Kelly & Adger, 2000; Yohe & Tol, 2002; Grothmann and Patt (2005), Grothmann and Reusswig 2006; Smith and Wandel, 2006; Tol and Yohe, 2007]

Measuring Adaptation efficacy:

Scale of measurement of Adaptation efficacy	Indicator/Variable							
Adaptation efficacy	Given the impact of SLR, how strongly the respondent believe that adaptation against –							
Scale:	Salinity free drinking water will be possible							
1 = Do not think possible any way	Inward shift of coastline will be possible							
2 = May be possible only with external assistance	Stormy events and surge will be possible							
3 = External assistance may help; without that possible as well	Disrupted social & physical mobility will be possible							
	Threat of livelihood security will be possible							
Note: Note: In each cases to summarize the scale value 1, 2, 3 are weighted as $(1/3 = 0.33, 2/3 = 0.67, \text{ and } 3/3 = 1 \text{ respectively})$								

Construction of Climate awareness indices and adaptation efficacy index:

□ Weighted mean score index of each of the three dimensions of climate awareness and adaptation efficacy for each of the respondents are computed using the formula $\sum Wi/n$ (Wi = individual's weighted score (either of 0.33, 0.67 and 1.0) for each question, n = number of question).

□ After determination of individual's weighted mean score, by using the formula ∑*Wifi/*∑*fi* (where Wi = individual's weighted score for each question, fi = frequency of that particular score) weighted average mean (index) is prepared for each of the three dimensions of climate awareness and climate adaptation efficacy for a comparison.

Three indices related with climate awareness are later used as predictor variable along with other variables selected from factor analysis to predict the variances in climate adaptation efficacy of the respondents.

Indices of three dimensions of climate awareness and climate adaptation efficacy

Dimension of climate awareness	Weighted average mean index (out of 1)	Standard deviation
Familiarity with climate change/extreme signal	0.85	0.14
Perception about CC-SLR event	0.75	0.10
Tacit/intuitive knowledge about SLR impact	0.74	0.11
Climate adaptation efficacy	0.68	0.26

Factor Analysis: identifying the factors/variables to be used in "adaptation efficacy" model

Initially altogether 21 factors/variables were loaded in (PCA). Among these 13 factors/variables were coded following dummy coding as illustrated by Hardy and Bryman (2004) while 8 variables are measured in their respective SI units.

□ Finally 20 factors/variables are loaded in PCA.

□ The factor analysis is statistically valid (Field, 2005). Because, the determinant (e.g. 4.73E-05) of correlation matrix > 0, the Kaiser-Meyer-Olkin value for sampling adequacy was 0.57, and the Bartlett's test of sphericity was significant at 0.000. Further a total of 20 variables for a sample size of 285 meets the requirement for factor analysis (i.e. 5:1 case/variable ration as recommended by Coakes and Steed 2001) as well.

□ Total 8 components having *Eigenvalue* >1 were extracted using varimax rotation with Kaiser normalization to maximize intra-component variances as suggested by Tabachnick and Fedell (1996). These eight components explained almost 72% of the variances which is much higher than the threshold recommended by Hair *et al.* (2006). Component wise loading factor (loading factor <0.20 is not shown) of variables are presented in the ANNEX I.

Component wise factor loading

□ 1st component: "attachment with coastal environment", constitutes 3 variables/factors that explains 13.89 % of the variances.

□ 2nd component: "wealth and social standing" constitutes 4 variables/factors that explains 13.51 % of the variances.

□ 3rd component: "social networking" constitutes 2 variables/factors and explains 9.57 % of the variances.

□ 4th component has 2 variables/factors characterized with "access to print media for flood information" explains 7.89% of the variances.

□ 5th component "coping and adaptation with recurrent hazard" includes 3 variables/factors and explains 7.70% of the variances.

□ 6th component has 2 variables/factors characterized with "spatial and demographic causes of exposure to climatic hazard" explains 7.47% of the variances.

□ 7th component is related to "exposure potential of dry spell due to types of occupation" includes 2 variables/factors and explains 6.42% of the variances.

8th component is characterized as "gender difference in electronic media use for climate information" constitutes 2 variables/factors explains 5.61% of the variances. Result of Multiple regression model:

Variable entered in Multiple Regression Model

□ The adaptation efficacy index developed earlier is used as dependent variable.

□ The independent variables are drawn from the PCA analysis cited earlier and the three indices of climate awareness (i.e. familiarity index, perception index, and knowledge index).

Backward method of multiple regression analysis is done to single out the predictors from each of the eight broad categories of factor and climate awareness indices.

□ The advantage of backward method of regression analysis is that all the independents/predictors variables are entered at a time and the model removes the insignificant one (more) predictor(s) having p value 0.10 or more in each iteration process. At the end of necessary number of iteration(s) of process stop and the model offers only the predictors that significantly explain the variance of dependent variable (George and Mallery, 2006).

Result of Multiple regression model:

Output of Regression Model:

□ All together 7 factors statistically significantly explain 45 percent of the variations in climate adaptation efficacy of respondents [F (22, 262) = 27.61, p<0.0001, R2 = 0.45].

Model output is free of colinearity influence. Tolerance value in most cases 0.80 and above and variance inflation factors (VIF) much lower that 10.
 Factors related with *attachment with coastal environment* – age (B= 0.008, p<0.01) of the respondent and number of time changed settlement (B= 0.052, p<0.10) are significant predictors of variances in climate adaptation efficacy.
 Among the wealth and social standing related indicators total farmland holding (-0.01, p<0.10 is significant predictor of variance.

□ Similarly among the *social networking* factors- often need contact with local officials (-0.11, p<0.001) is significant predictor.

□ Likewise, among the factors characterized with *spatial and demographic* causes of exposure to climatic hazard- distance from the coast (km) (B= 0.006, p<0.05) is significant predictor.

Among the factors relate with coping and adaptation with recurrent hazard (dummy)- frequent adaptation against dryer condition (B= -0.089, p<0.01) is a significant predictor. Result of Multiple regression model:

Output of Regression Model:

However, among the three dimension of *climate awareness* only perception about CC-SLR event (B= 1.28, p<0.001) is significant predictors of adaptation efficacy.

Contrary to expectation of this research, finding unveils that climate familiarity and tacit/intuitive knowledge about the impacts SLR have no significant impact on climate adaptation efficacy of the respondents.

Among all factors that affect climate adaptation efficacy positively, perception about CC-SLR event is the strongest one (β= 0.51, p<0.001), followed by age (β= 0.33, p<0.001) and distance from the coast (β= 0.10, p<0.05).

□ Among all factors that affect climate adaptation efficacy negatively, habit of seeking external assistance such as contacting with local authority to solve problem is the strongest one (β = -0.17, p<0.001), followed by frequent adaptation against dryer condition (β = 0.16, p<0.001) and salinity intrusion (β = 0.10, p<0.05).

Policy Implication and Concluding remarks

Among the climate awareness dimensions only one dimension i.e. perception about CC-SLR event is statistically highly significant predictor of people's climate adaptation efficacy. However, influences of other two dimensions are not very significant. Nonetheless this finding is robust from two considerations.

- First, it will reemphasis to initiate of climate awareness program before implementation of any adaptation measures where there is need for involvement of local community.
 - Second, it will bring the climate awareness issue in the forefront of debate about broader issue of adaptation against climate CC-SLR for livelihood security.
- However, as livelihood security encompasses more than just earning opportunity or food security other findings of this research need to accounted with due merit.
- For example, people who have changed settlement location more times than who does less or not changed at all have demonstrated more climate adaptation efficacy. It means peoples who had moved inward from the coast feel them more confident to face the CC-SLR impacts in future.

Policy Implication and Concluding remarks

Similarly people have been living far from the coast demonstrated more adaptation efficacy against CC-SLR than people living close to the coast.

Someway both the findings are giving the same message i.e., to secure livelihood from the threat of CC-SLR some people might start evacuating from the coast to resettle more inward which might result in mass displacement in the long run.

It might happen even earlier as because people who have been encountering natural disaster for years, for example, salinity intrusion, and seasonal dry spells are already in their pick of coping range to secure their natural resources based livelihood. Any additional episode of same kind of disaster which is more likely in future will severely erode their adaptation efficacy which is already exhausted as they think they are crossing their copping threshold.

Future direction of Research

As finding concludes carefully designed intervention needs to be initiated without further delay to let the coastal people be aware about the CC-SLR adaptation. This would help them leave out any wrong conception about CC-SLR which will help enhancing adaptation efficacy which in turn would encourage them anticipatory adaptation against future SLR.

However, this finding gives a new direction of research for exploring the relationship among climate adaptation efficacy and preference for various measures of adaptation for securing livelihood from the threat of CC-SLR in coastal Bangladesh.

ANNEX 1. Factor loading Matrix:

Variable- Factors loading	1	2	3	4	5	6	7	8
Duration of living (yr)	0.95							
Age of respondent (yr)	0.83							
Changed settlement since	-0.74							
birth (freq.)								
Total farm land (ha)		0.89						
Total yearly income (BDT)		0.87						
Possession of television		0.76						
(dummy) ^a								
Education of respondent (yr	-0.33	0.57						
of schooling)								
Habit of personal contact			0.88					
with official (dummy) ^a								
Membership status of any	-0.20		0.87					
entity (dummy) ^a								
Variance (%)	13.89	13.51	9.57	7.89	7.70	7.47	6.42	5.61
Cumulative variance (%)	13.89	27.40	36.97	44.86	52.56	60.04	66.46	72.07

Variable- Factors loading	1	2	3	4	5	6	7	8
Use of newspaper for weather	-0.23	0.24	-0.22	0.70				
knowledge (dummy) ^a								
Adaptation with recurrent flood			0.22	0.57		0.38		0.28
(dummy) ^a								
Recurrent exposure to saline				0.23	-0.80			-0.80
water (dummy) ^a								
Recurrent exposure to rainfall				0.26	0.69			0.69
(dummy) ^a								
Peer/community as source of	0.31		-0.31		0.45	0.25		0.45
knowledge (dummy) ^a								
Distance from the coast (km)						0.85		
Household size (number)	0.56					-0.59		
Adaptation with recurrent dry							0.85	
spell (dummy) ^a								
If agriculture & allied livelihood		-0.23		-0.44			0.53	0.20
(dummy) ^a								
If respondent is male (dummy)								0.68
Regular access to radio			21				-0.31	0.66
(dummy) ^a								
Variance (%)	13.89	13.51	9.57	7.89	7.70	7.47	6.42	5.61
Cumulative variance (%)	13.89	27.40	36.97	44.86	52.56	60.04	66.46	72.07

Annex II: Multiple regression model of effects of factors on climate adaptation efficacy

					Collinearity Statistics	
Independent variables (N =285)	Coefficient B ^a (β) ^b	Std. Error	t statistics	Sig.	Tolerance	VIF
(Constant)	669	.120	-5.557	.000		
Age of respondent (yr)	0.008*** (0.33)	.001	6.573	.000	.797	1.25
No. of time changed settlement (number)	.052* (0.09)	.029	1.794	.074	.763	1.31
Total farmland (ha)	-0.010* (0.09)	.006	-1.782	.076	.856	1.17
Often need contact with local officials (dummy)	-0.115*** (-0.17)	.031	-3.762	.000	.930	1.08
Distance from the coast (km)	0.006** (0.10)	.003	1.995	.047	.843	1.19
Frequent adaptation against saline water (dummy)	-0.052** (-0.10)	.025	-2.109	.036	.921	1.09
Frequent adaptation against dryer condition (dummy)	-0.089*** (-0.16)	.026	-3.435	.001	.878	1.14
Perception about CC-SLR events (index)	1.28*** (0.51)	0.122	10.473	.000	.851	1.17
Э	27.61***					
DF	(22, 262)					
R2 (Adjusted R2)	0.45 (0.43)					

Note:

Dependent variable: Climate adaptation efficacy (index);

^a Unstandardized regression coefficient;

^b Standardized regression coefficient;

*significant at 0.10; **significant at 0.05; ***significant at 0.01-0.001.

